

Peter M. Lewis Andreas Loeschcke Centeno Christian Wessel 18 Dec 2020

Overview

A proof-of-concept project

- Can a tracking TPC work for Belle in the future? (2030+ SuperKEKB luminosity upgrade)
- **Fine 3D segmentation** in principle is far more tolerant of high rates/high backgrounds

This project: demonstrate **proof-of-concept** for a tracking TPC in Belle II. Use **LCTPC** as a starting point with **Belle II** simulation.

Status

Working towards a white paper

- We are a small team of **Belle II** and **LCTPC** collaborators
- We have been working for ~4 months:
 - One masters thesis in progress
 - One PhD thesis portion in progress
 - Others contributing less formally
- Working towards a White Paper for summer 2021

Geometry

Largely inflexible

- Can't put readout on FWD side
 (asymmetric collider-->PID
 detector in FWD region is beyond tracking volume)
- Inner tracking volume has strange shape, not appropriate for TPC
 - Abandon to expanded silicon

Fill remaining volume with **single drift volume** and **read out** on BWD end

Primary technical concerns

"This won't work at Belle because..."

- TPC can't provide a **trigger**
- Event rate is too high
- No dE/dx for low- p_T tracks
- ...

Our first goal is to demonstrate **potential solutions** to these problems in simulation

(some) Readout considerations

Readout considerations

GridPix: a starting point

Pixel chip with integrated MICROMEGAS

Excellent resolution:

• 50x50x pixels

Low throughput:

- **Single-electron** detection
- Can use **binary readout**

Low intrinsic ion backflow:

 (LCTPC): Ion backflow as low as 1 ion per primary electron, with >90% efficiency

Simulation

Where we are right now

- Currently a combination of Belle 2 simulation and standalone code
- Currently implemented:
 - One electron → one hit (approximating InGrid detector)
 - Pixel chip, binary readout (50x50x50um³ voxels)
 - T2K gas with simulated diffusion and ionization properties
- Currently **not** implemented:
 - Field cage, drift field, field uniformity, etc.

Simulation demo: dE/dx

(b) CDC

Simulation demo: micro-curlers (100 pions)

Early work addressing the technical concerns

Event pileup

Per 30us drift volume

- Full Belle II luminosity
- Bhabha dominated (but these should be relatively easy to identify and remove)
- We have many tools (IP pointing, diffusion, etc.) to identify and remove overlaid physics
- Overall this isn't a problem... and furthermore shows that gating may not be impossible (depending on target luminosity)

Background pileup

Now with **beam backgrounds**

 The hit rate/ionization rate is dominated by beam backgrounds...

Background pileup

Now with **beam backgrounds**

- The hit rate/ionization rate is **dominated** by beam backgrounds...
- These lead to **low-energy microcurlers**
 - Responsible for huge majority of total ionization
 - Evaluating multiple ways to suppress (from chip trigger masks and FPGA algorithms through tracking filters)
 - LCTPC has shown excellent rejection of these kinds of hits: we should too
 - But this will still lead to high ion backflows

Background pileup

Background rejection

Side View of TPC Volume

Microcurler removal at whole chip level

Side View of TPC Volume

Background rejection

The next steps

Evaluate **performance**

- Key tracking variable $\mathbf{p}_{\mathbf{T}}$:
 - Dependence on amplification/readout choice?
 - Dependence on background rates?
 - Effect of ion backflow?
 - Effect of diffusion?
- Particle identification via dE/dx

The next steps

Evaluate **multiple TPC scenarios**

- Replace pixels with pads/strips, something else?
 - Cost
 - Unnecessary resolution (?)
- Ion backflow suppression:
 - GEM stack (low backflow, higher data throughput)
 - Partial or adaptive gating (?)
- Potential alternative gases (for v_d ion mobility, etc.)

Our *goal* for the white paper is to evaluate several possible scenarios, at least one of which will (hopefully) meet Belle II+ tracking requirements